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PHYS-434 – Physics of photonic semiconductor devices, Raphaël Butté

Solution 11 – Some basic notions on laser diodes I

Exercise I: Optical resonator and lasing oscillation threshold

1. To solve this question, the treatment is similar to the case of the Fabry-Perot cavity. The
main differences reside in the presence of an amplification coefficient exp[(γ − αp)d/2] and
the absence of an angular component for the dephasing term as we consider a complex scalar
plane wave which propagates under normal incidence.

The incoming light field E0 is such that: E0 = Eie
i(ωt−kx) (x = 0 at the cavity entrance).

The first part of the transmitted field is given by:

E1t = Eie
i(ωt−kd)t1t2 exp[(γ − αp)d/2]

The second part of the transmitted field, which has performed a round-trip with respect to
E1t, is given by:

E2t = E1t × e−2ikdr1r2 exp[(γ − αp)d]

Using a similar scheme, we obtain:

ENt = E1t × e−2(N−1)ikd(r1r2)
N−1 exp[(N − 1)(γ − αp)d]

Then Et = E1t + E2t + ...+ ENt which leads to:

Et = Eie
i(ωt−kd)t1t2 exp[(γ − αp)d/2][1 + e−2ikdr1r2 exp[(γ − αp)d] + ...]

The summation of this series can be summarized as:

Et = Eie
i(ωt−kd)t1t2 exp[(γ − αp)d/2]

[
1−

(
e−2ikdr1r2 exp[(γ − αp)d]

)N
1− e−2ikdr1r2 exp[(γ − αp)d]

]
(with N → ∞)

2. The electromagnetic field diverges when the denominator of previous equation is equal to zero:
this is the lasing oscillation condensation threshold.

It is thus seen that two conditions must be satisfied to get lasing oscillations: a condition on
the optical gain and a condition on the phase.

Condition on the optical gain

The optical gain of the amplifying medium must overcome the various losses occurring in the
cavity: mirror transmissivity, light scattering, parasitic absorption, etc. which is summarized
by the inequality: |r1r2| exp[(γ − αp)d] > 1.

There is a lasing oscillation threshold γthr above which the gain medium will spontaneously
oscillate. This threshold is given by: γthr = αp − (1/d) ln |r1r2|, which leads to:

γthr = αp −
1

2d
ln(R1R2)

when introducing the reflectivity of the mirrors.

It is seen that the gain is damped once crossing the threshold since the equation of the
transmitted field Et indicates that an increasing γ (with γ > γthr) would lead to a divergence
of Et which is a physical nonsense.
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3. Losses in the system for a single pass are such that:

losses = 1− exp(−γthrd) = 1− exp

(
−tsingle pass

τcav

)
Thus γthrd = tsingle pass/τcav and as tsingle pass = d/c′, where c′ = c/nop is the velocity of the
wave propagating in the cavity, we get τcav = 1/(γthrc

′) and finally we get:

τcav =
nop

c
(
αp − 1

2d
ln(R1R2)

)
4. Condition on the phase

The condition on the phase which ensures that the denominator of Et is equal to zero is such
that: kd − φ = nπ with n ∈ N . As we consider a cavity surrounded by metallic mirrors
(φ = π), kn = (n + 1)π/d, or, km = mπ/d with m ∈ N∗. Note that km = 2πnop/λm with
λm = c/νm, the amplified modes are given by:

νm =
mc

2nopd

where νm values lie within the gain spectrum of the amplifying medium.

The splitting between each mode is equal to c/(2nopd).

The number of allowed amplified modes Nmode is thus given by the ratio of the bandwidth
exhibiting amplification by c/(2nopd) so that:

Nmode =
B

c/(2nopd)

Exercise II: Optimization of a multiple quantum well laser diode

1. When considering the optical confinement factor Γ, the lasing oscillation threshold condition
of a single QW LD is given by:

Γγmax = losses ⇒ Γγ0 ln

(
nthr

ntr

)
= αp +

1

2L
ln

(
1

R1R2

)
2. Knowing that ns = (Jτ)/q and ntr = (Jtrτ)/q, we get:

γmax(J) = γ0 ln

(
J

Jtr

)
3. Let us consider an identical coupling of the electromagnetic wave with the wells , we will get

γmax,N = Nγmax, so that:

γmax,N = Nγmax = Nγ0 ln

(
J1
Jtr,1

)
4. As a result we obtain:

JN = NJ = N
qns

τ
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5. From the previous relationship, we can deduce that:

γmax,N = Nγ0 ln

(
JN
NJtr

)
(Jtr = Jtr,1)

6. From the previous relationships, we get:

NΓγ0 ln

(
JN,thr

NJtr

)
= αp +

1

2L
ln

(
1

R1R2

)
which leads to:

JN,thr = NJtr exp

[
1

NΓγ0

(
αp +

1

2L
ln

(
1

R1R2

))]
7. The number of QWs that will minimize the threshold current is deduced from the equation

dJN/dN = 0:

Jtr exp

[
1

NΓγ0

(
αp +

1

2L
ln

(
1

R1R2

))]
+

NJtr exp

[
1

NΓγ0

(
αp +

1

2L
ln

(
1

R1R2

))]
×− 1

N2Γγ0

(
αp +

1

2L
ln

(
1

R1R2

))
= 0

⇒ 1− 1

NΓγ0

(
αp +

1

2L
ln

(
1

R1R2

))
= 0

which leads to:

N =
1

Γγ0

(
αp +

1

2L
ln

(
1

R1R2

))
In fact,

Nopt = 1 + I

[
1

Γγ0

(
αp +

1

2L
ln

(
1

R1R2

))]
where I[...] is the integer part of the function enclosed by brackets.

8. The optimum cavity length Lopt is obtained through the derivation of IN,thr with respect to
L where IN,thr = JN,thrLw, with w the width of the structure. Lopt is thus deduced from the
equation dIN,thr/dL = 0:

wJN,thr + Lw ×NJtr exp

[
1

NΓγ0

(
αp +

1

2L
ln

(
1

R1R2

))]
× 1

NΓγ0
ln

(
1

R1R2

)
×− 1

2L2
= 0

⇒ wJN,thr + Lw × JN,thr ×
1

NΓγ0
ln

(
1

R1R2

)
×− 1

2L2
= 0

⇒ 1− 1

NΓγ0
ln

(
1

R1R2

)
× 1

2L
= 0

⇒ Lopt =
1

2NΓγ0
ln

(
1

R1R2

)
9.

Nopt = 1 + I

[
1

0.1× 100

(
10 +

1

2× 500× 10−4
ln

(
1

1× 0.32

))]
= 3

lopt =
1

2× 10.1× 100
ln

(
1

0.32

)
≈ 570 µm
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