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Solution 11 — Some basic notions on laser diodes 1

Exercise I: Optical resonator and lasing oscillation threshold

1. To solve this question, the treatment is similar to the case of the Fabry-Perot cavity. The
main differences reside in the presence of an amplification coefficient exp[(y — «,,)d/2] and
the absence of an angular component for the dephasing term as we consider a complex scalar
plane wave which propagates under normal incidence.

The incoming light field Ej is such that: Ey = E;e"“*=%*) (z = 0 at the cavity entrance).
The first part of the transmitted field is given by:

By = Bttty exp(y — ay)d/2]

The second part of the transmitted field, which has performed a round-trip with respect to
Ey, is given by: A
Ey = Eyy x e 2y g exp((y — ap)d|

Using a similar scheme, we obtain:
Eni = By x e 2N=0kd (1 YW1 oxp[(N — 1) (7 — a,)d]
Then E; = Ey; + Eo + ... + En; which leads to:
E, = Eie"“ = ity expl(y — ap)d/2][1 + e 2*dr i1y expl(y — ap)d] + ...]

The summation of this series can be summarized as:

. N
1— (6_2”""{7'17'2 exp|(y — ozp)d])

E, = Bk ¢ exp|(y — ap)d/2] = e,y oxpl(7 = )]
” ¢ . } - p

(with N — o0)

2. The electromagnetic field diverges when the denominator of previous equation is equal to zero:
this is the lasing oscillation condensation threshold.

It is thus seen that two conditions must be satisfied to get lasing oscillations: a condition on
the optical gain and a condition on the phase.

Condition on the optical gain

The optical gain of the amplifying medium must overcome the various losses occurring in the
cavity: mirror transmissivity, light scattering, parasitic absorption, etc. which is summarized
by the inequality: |rirs|exp[(y — ap)d] > 1.

There is a lasing oscillation threshold 4, above which the gain medium will spontaneously
oscillate. This threshold is given by: v, = oy, — (1/d) In|ry7s|, which leads to:

1
Ve = Qp — 5o In(R; Ry)
when introducing the reflectivity of the mirrors.

It is seen that the gain is damped once crossing the threshold since the equation of the
transmitted field £, indicates that an increasing v (with v > ~,,) would lead to a divergence
of E; which is a physical nonsense.



PHYS-434 Solution 11 — Some basic notions on laser diodes I 14.05.2025

3. Losses in the system for a single pass are such that:

TCG,’U

tsin e pass
losses = 1 — exp(—ygned) = 1 — exp (_L)
Thus Yind = tsingle pass/Teav A a8 teingle pass = d/¢, where ¢ = ¢/n,p is the velocity of the
wave propagating in the cavity, we get Teay = 1/(Yene¢’) and finally we get:

Nop

¢ (o — 55n(R Ry))

Teav =

4. Condition on the phase

The condition on the phase which ensures that the denominator of E} is equal to zero is such
that: kd — ¢ = nm with n € N. As we consider a cavity surrounded by metallic mirrors
(p =m), ky = (n+ 1)n/d, or, k,, = mn/d with m € N*. Note that k,, = 2mne,/\,, with
Am = ¢/Vp, the amplified modes are given by:

mc
2nopd

Vm =

where v, values lie within the gain spectrum of the amplifying medium.
The splitting between each mode is equal to ¢/(2nqpd).

The number of allowed amplified modes Nyoqe is thus given by the ratio of the bandwidth
exhibiting amplification by ¢/(2n,,d) so that:

B

Nmo( e — /o N
: ¢/ (2ngpd)

Exercise II: Optimization of a multiple quantum well laser diode

1. When considering the optical confinement factor I', the lasing oscillation threshold condition
of a single QW LD is given by:

Nthr 1 1
T max = 1 = Tyl =, + —1
Y, osses Y0 n(ntr) 041+2L n (Rle)

2. Knowing that ny, = (J7)/q and ny, = (Ju.7)/q, we get:

J
“Vmax J) =71 -
Ymax(J) = 70 In ( Jm~>

3. Let us consider an identical coupling of the electromagnetic wave with the wells , we will get
Ymax,N = N’Ymaxa so that:

J
Tmax,N = N’Ymax - N’Yo In <J ! )

tr,1

4. As a result we obtain:
qns

T

Jy=NJ=N
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5. From the previous relationship, we can deduce that:

JIN
Ymax.N = No 1 Jir = Jir
) N Yo 111 <NJH>( t t,1)

6. From the previous relationships, we get:
JN thr 1 1
NIy 1 ’ = —1
i n(NJtr> Y H<R1R2>

1 1 1
In e = Ny exp {NF% <ap + ﬁln <Rll?2>>]

7. The number of QWs that will minimize the threshold current is deduced from the equation
dJN/dN =0:

1 1 1
— —1
teesn s (ot 5 (7))

1 1 1 1 ! !
N 57 - 2L -
Jur X {NF’YO (% - oL (R1R2))1 . N2T'y, (% " 2L <R1R2>) ’
1 )

which leads to:

which leads to:

In fact,

1 1 1
Nope =1 +1 ? —In | ——
. N {F“/o <ap Tart <R1R2>>}

where I[...] is the integer part of the function enclosed by brackets.

8. The optimum cavity length L is obtained through the derivation of Iy, with respect to
L where Iy = Jy e Lw, with w the width of the structure. Loy is thus deduced from the
equation d/py tn,/dL = 0:

1 1 1 1 1 1
INinr + L N Ji, — —1 1 S
WJN thr + LW X tr €XP [NF'yO (Ozp+ 5 n (Rle))} X NTg n (Rle) X TP
1 1 1
= wJN7thr + Lw X JN,thr X In (RlRQ) X —— =0
1 1 1
NF70 " (RlRQ) % 2L

= L ! 1 !
opt = n
Pt 2N F",’O R1 RQ

1 1 1
Nopt = 14+T|—-— (1 1 =
opt * {0.1 x 100 ( O 500 x 10 n(1 ><().32>)] k

1 1
= 1 ~
ot = 100 x 100 ™ (0.32) o710 pim
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